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Examined floor response spectra generated from shake
table data and numerical modelling
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5-Storey Steel Frame Building [1] 1-Storey Lightweight Timber Building (2] 9-Storey RC Wall Building (3]
Shake Table Testing Shake Table Testing Numerical Modelling
Configured with: Configured with Configured with
* Triple pendulum friction bearings * Flat slider friction bearings * lead rubber + flat slider friction bearings

* Lead rubber + cross-linear bearings
* Fixed base
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Two common isolator types: Rubber and Friction

LRBs and TPBs used in 5-Storey Steel E-Defense Testing
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Lead rubber bearings (LRB) consist of laminated

rubber and steel shims surrounding a lead core

Dissipates energy by yielding lead core
Low initial stiffness
Bilinear force-displacement response
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Triple pendulum bearings (TPB) consist of an inner slider,
inside of inner and outer concave spherical surfaces

Dissipates energy through friction by sliding
High initial stiffness
Multi-linear force-displacement response
proportional to sliding surface curvature



Peak floor acceleration distribution with height obs erved to
significantly reduce after isolation device activation
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Fixed base Triple pendulum bearings Lead rubber bearings
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(C) Triple pendulum bearings, 80% Westmorland earthquake.
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Infer initial modal periods from fixed base
superstructure, assuming high initial friction in
isolators is effective fixed base

Infer effective higher modal periods,
approximately equal to tangent periods

(T, and T,)

Demands cap at initial modal periods,
develop at/towards tangent higher modal
periods and effective first modal period

Recorded at Roof

Linear elastic periods

Recorded at Isolated Base Recorded at Table

Nonlinear periods




Superstructure

How can we represent a base isolated building?

Base mass a
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Superstructure andisolators idealised as 2DOF
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Isolators idealised with bilinear backbone curve

Dynamic properties of the system will depend on relative

Masses:

stiffnesses:

constant throughout ground motions

changes with nonlinear response from activation of isolators
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Fixed base
Well predicted by both approaches
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Predicted and recorded acceleration response spectra at roof and base levels of the buildingin
three configurations for the 80% Westmorland earthquake motion




Lead rubber bearing + Cross linear bearing system
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Triple Pendulum Bearings
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Hospitals have post-event functionality requirements
SLS2 Design Requirements may govern

Cp (Tp) R W

Table 8.3 — Part-response or component-response factor, Con and Cpy

SLS2
Hy <125 =~ Cpp <14
Q,=1
ULS
pyp =125 = Cpp = 1.4
for all but the most brittle
Q,=15

a. A long-period component is taken as a component that has a fundamental period,
where Tp,iong is defined in 8.2.

Ductility of the | Rigid components | Flexible components Long-period

part up components?
All levels At ground level or | Above ground | All levels

below level

1.0 1.0 1.0 1.0 1.0

1.25 1.0 1.25 14 1.25

1.5 1.0 1.5 1.85 1.5

2.0 1.0 20 28 2.0

225 1.0 2.5 4.0 25

NOTE -

Tp, greater than Tp,iong,

If PFAs are similar, ULS are smaller
by atleast 1/1.5, likely more

SLS2 assumptions may be over
conservative. More work needed.
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