

NEW ZEALAND SOCIETY FOR EARTHQUAKE ENGINEERING

Guideline for the Design of Seismic Isolation Systems for Buildings

JUNE 2019 DRAFT FOR TRIAL USE

Guideline for Buildings with Seismic Isolation

https://www.nzsee.org.nz/wp-content/uploads/2019/06/2825-Seismic-Isolation-Guidelines-Digital.pdf

- Supplements NZS 1170.5 (Earthquake actions)
- Displacement-based with period elongation and damping
- 4 system types Simple, General, Complex, Brittle
- Analysis methods: simple SDOF ADRS, Modal Response Spectrum and NLRHA (time history)
- Design actions and step by step procedures for substructure, isolation & superstructure
- Includes inspection & maintenance, purchase specification for isolation system and devices
- Draft for Trial Use now 5 years old!

TABLE OF CONTENTS

Preface	12
1. 1. Introduction	13
1.1 Purpose and scope	14
1.2 Building Code compliance	15
1.3 Peer review	15
1.4 Determination of earthquake actions	15
1.5 Limit states	15
1.6 Outline of this document	16
Commentary	17
2. Isolated building system and design philosophy	21
2.1 Overview	22
2.2 Criteria for each isolated building type	22
2.3 Structural performance factor (S_p) and force reduction factor (k_p)	23
2.4 Components of an isolated building and their functions	23
2.5 Building component design requirements	26
Commentary	28
3. Building performance	33
3.1 Overview	34
3.2 Low damage design	34
3.3 Performance objectives	34
3.4 Performance criteria	36
3.4 Performance criteria 3.5 External factors	
3.5 External factors	37 37
3.5 External factors	37 37
3.5 External factors	37 37 38
3.5 External factors 3.6 Instrumentation and monitoring Commentary	37 37 38 41
3.5 External factors 3.6 Instrumentation and monitoring Commentary 4. Seismic hazard spectra and ground motions	
 3.5 External factors 3.6 Instrumentation and monitoring Commentary 4.1 Overview 4.1 Overview 4.2 Acceleration and displacement seismic demands 4.3 Site-specific hazard studies 	
 3.5 External factors 3.6 Instrumentation and monitoring Commentary 4.1 Overview 4.1 Overview 4.2 Acceleration and displacement seismic demands 	
 3.5 External factors 3.6 Instrumentation and monitoring Commentary 4.1 Overview 4.1 Overview 4.2 Acceleration and displacement seismic demands 4.3 Site-specific hazard studies 	

5.	An	alysis requirements and methods	55
	5.1	Overview	56
	5.2	Selecting the analysis method	56
	5.3	General requirements	57
	5.4	Single degree of freedom analysis of the isolation system	58
	5.5	Equivalent static analysis of the superstructure	62
	5.6	Modal response spectrum analysis	66
	5.7	Numerical integration time history analysis	
	5.8	Analysis of part of a building, and floor response spectra	70
	Cor	nmentary	71
6.	DE	SIGN	77
	6.1	The design process	78
	6.2	Structural performance factor S _p	78
	6.3	Superstructure ductility	78
	6.4	Capacity design of the superstructure	78
	6.5	Bounding isolator property variability	79
	6.6	Structural elements for isolator stability	79
	6.7	Design criteria and procedures for each isolated building type	82
	Cor	nmentary	93
7.	De	tailing at the isolation plane	107
	7.1	Transfer structures	108
	7.2	Access to isolators (crawl space)	108
	7.3	Isolator attachment, installation and removal	108
	7.4	Temporary restraint during construction	108
	7.5	Durability	108
	7.6	Fire protection	108
	7.7	Design for access and egress	108
	7.8	Building services and utilities	108
	Cor	nmentary	109
8.	Sp	ecification for procurement of isolation systems and isolators	117
	-	General	
	8.2	Quality assurance	
	8.3	Supplier submittals	119
	Cor	nmentary	121

9.	Ins	pection and maintenance	123
		General	
	9.2	Warning signage	124
		Maintenance manual	
	9.4	Displacement recorders	124
	9.5	Inspection and maintenance programme	124
	Com	mentary	126
Refe	ren	ces and bibliography	.127
		ces and bibliographyix A - Definitions and abbreviations	
Арр	end		131

"Parts" of isolated structures

NZS 1170.5:2004

46

8.2 DESIGN RESPONSE COEFFICIENT FOR PARTS

When the part is supported directly on the ground floor it shall be designed as a separate structure with design actions derived in accordance with Section 5 using the structural characteristics determined in Section 4.

In cases when the part is supported at level *i* of a structure, the design response coefficient for parts, $C_p(T_p)$ is the horizontal acceleration coefficient derived for the level of structure that provides support for the part. It shall be determined from Equation 8.2(1):

$$C_{\rm p}(T_{\rm p}) = C(0) C_{\rm Hi} C_{\rm i}(T_{\rm p})$$

where

- C(0) = the site hazard coefficient for T = 0 determined from Clause 3.1, using the values for the modal response spectrum method and numerical integration time history methods
- C_{Hi} = the floor height coefficient for level *i*, determined from Clause 8.3
- $T_{\rm p}$ = the period of the part
- $C_i(T_p)$ = the part spectral shape factor at level *i*, determined from Clause 8.4

5.8 Analysis of part of a building, and floor response spectra. 9

Parts of an isolated structure, permanent non-structural components and the attachments to them, and the attachments for permanent equipment supported by a structure should be analysed and designed to resist seismic forces and displacements based on the 'parts and components' loading of NZS 1170.5 Section 8 with the site hazard coefficient C(0) modified to equate the peak design acceleration of the base slab just above the isolators for the required limit state (typically SLS and ULS will be required as a minimum).

... 8.2(1)

Comments

- 5 years old ... time to remove "Draft"
- Isolation not the only protective technology
- Isolation + viscous damping double reduction
- "0.3" Rules of thumb
 - 0.3% drift for onset of drift sensitive elements
 - 0.3g floor acceleration for force sensitive elements

Challenges for EQ Protective Technologies

- Increased seismic risk awareness and expectations
- Updated NSHM has increased seismic hazard estimates
- Limited experience of structural engineers
- Building Code compliance
- Specification, supply and testing of devices
- Earthquake insurance availability
- Sustainability and resilient infrastructure demands

END

